

ACCELSIUS

Qingyang Wang qwang@accelsius.com Richard W. Bonner III rbonner@accelsius.com

Introduction

- Thermal design power of processors is surging driven by AI workloads
 - Current: ~1000W; Future: approaching 2000W
- Two-phase direct-to-chip cooling offers great advantages
 - Superior heat transfer (via nucleate boiling)
 - Isothermal processor case surface
 - Dielectric safety vs. water in case of leaks
 - Cost-effective and retrofittable to existing data centers
- Higher chip- and rack-level power densities necessitate innovative thermal packaging and management designs:
 - Traditional cold plates have standard horizontal upward orientation
 - New server designs (e.g., vertical blades, upside-down racks, double-sided cooling) require cold plates with horizontal downward or vertical orientations

Liquid Cooled Kyber Rack with Vertical Servers Set for Deployment 2027 (NVIDIA at GTC March 2025)

Example Two-Phase Products

CDU:

- Closed-loop system with dielectric fluid (eco-friendly R1233zd(E) or high-performance R515B)
- The largest cooling capacity twophase in-row CDU: MR250
- Able to cool 250kW of H100 servers with 40°C facility water

Cold Plate:

- Standard skived copper cold plate with flow boiling design
- Tested using R515B on a GPU TTV with saturation temperature at 40°C
- 4,500W was removed efficiently before wall power limitations were reached

Orientation Effects on Performance

- Three orientations tested for a cold plate tested without any orientation-specific modifications
- Performance Differences attributed to vapor bubble behavior and buoyancy-driven flow patterns
- All orientations maintained high thermal performance; no dry-out observed
- Orientation-specific design should yield even better performance

Summary: Orientation-Resilient Design

- Two-phase cooling delivers superior performance, enabling 250kW racks and 4500W TDP processors
- Future high-power racks and processors will require vertically mounted servers/processors or downward cooling
- Accelsius' two-phase flow boiling cold plates demonstrated reliable high performance in all orientations under consideration
- Our technology supports flexibility in server architecture (e.g., blades, edge racks, double-sided cooling), and enables thermal management of high-power processors in compact, high-density layouts

References

[1] R. Bonner, et al. "Understanding PFAS Concerns for Two-Phase Cooling of Data Centers",	[5] S. Ozguc, et al. "Investigation of Flow Restrictors for Rack Level Two-Phase Cooling under
Data Center Frontier, 33035570.	Nonuniform Heating", Semi-Therm, 2024.
[2] Q. Wang, et al. "A Server-Level Test System for Direct-to-Chip Two-Phase Cooling of Data	[6] Q. Wang, et al. "Universal Direct-to-Chip Cold Plates for Single- and Two-Phase Cooling," OCP
Centers Using a Low Global Warming Potential Fluid", IEEE ITherm, 2024.	Global Summit 2024.
[3] A. Narayanan, et al. "Investigation of Server Level Direct-to-Chip Two-Phase Cooling	[7] Q. Wang, et al. "A Practical Metric for Cold Plate Thermal Performance in Two-Phase Direct-to-Chip
Solution for High Power GPUs", ASME InterPACK, 2024.	Cooling", Semi-Therm, 2025.
[4] R. Bonner, et al. "High-Heat-Flux Rack Level Direct-to-Chip Two-Phase Cooling Using	[8] Q. Wang, et al. "Performance Comparison of R1233zd(E) and R515B for Two-Phase Direct-to-Chip
Sustainable Fluids", OCP Global Summit, 2023.	Cooling", IEEE ITherm, 2025.